Ion–surface interactions can alter the properties of nanopores and dictate nanofluidic transport in engineered and biological systems central to the water–energy nexus. The ion adsorption process, known as “charge regulation”, is ion-specific and is dependent on the extent of confinement when the electric double layers (EDLs) between two charged surfaces overlap. A fundamental understanding of the mechanisms behind charge regulation remains lacking. Herein, we study the thermodynamics of charge regulation reactions in 20 nm SiO2 channels via conductance measurements at various concentrations and temperatures. The effective activation energies (Ea) for ion conductance at low concentrations (strong EDL overlap) are ∼2-fold higher than at high concentrations (no EDL overlap) for the electrolytes studied here: LiCl, NaCl, KCl, and CsCl. We find that Ea values measured at high concentrations result …
top of page
bottom of page
Comments