

NanoGenerator® cGMP Nanoparticle Synthesis System

PreciGenome

AUG 2025

<u></u>

What are Lipid Nanoparticles?

Lipid nanoparticles (LNPs) are self-assembling structures of natural or synthetic lipids in an aqueous environment.

RNA-LNP Therapeutics and Vaccines

Table 1. Representative mRNA-LNP cancer vaccines in clinical trials					
Name	Encoded antigen	Administration route	Condition	Stage	NCT number
BNT112	kallikrein-2, kallikrein-3, acid phosphatase prostate, homeobox B13, and NK3 homeobox 1	i.v.	prostate cancer	phase 1/2 study	NCT04382898 ¹²⁷
BNT113	HPV-16 oncoproteins E6 and E7	i.v.	head and neck cancer	phase 2 study	NCT04534205 ¹²⁸
BNT122	up to 20 neoantigens	i.v.	pancreatic cancer	phase 1 study	NCT04161755 ¹²⁵
mRNA-4157	up to 34 neoantigens	i.m.	non-small cell lung cancer	phase 3 study	NCT06077760 ¹²⁹
	up to 34 neoantigens	i.m.	melanoma	phase 3 study	NCT05933577 ¹³⁰
mRNA-5671	4 prevalent KRAS mutant antigens	i.m.	tumors with KRAS mutation	phase 1 study	NCT03948763 ¹³¹

Drug name	Administration route	Target virus	Stage
mRNA-1273	i.m.		approved
BNT162b2	i.m.	COVID-19	approved
ARCT-154	i.m.		approved
DCVC H1 HA mRNA vaccine	i.m.	H1N1	phase 1 study
H3 mRNA/LNP vaccine	i.m.	H3N2	phase 1 study
mRNA-1769	i.m.	MPXV	phase 1/2 study

Name	Gene-editing technology	Administration route	Condition	Stage
NTLA-2001	CRISPR-Cas9	i.v.	hATTR	phase 3 study
NTLA-2002	CRISPR-Cas9	i.v.	HAE	phase 3 study
VERVE-101	base editing	i.v.	HeFH	phase 1 study

Molecular Therapy Methods & Clinical Development. 2025, Volume 33, Issue 2, 101463

Lipid Nanoparticle Synthesis Methods

Conventional Methods

A Film hydration

- Established method
- Versatile method
- High consumption of the organic solvent
- High PDI
- Lack of reproducibility
- Need for additional downsizing step
- Difficulties in scaling-up

B Solvent injection

- Simple and fast
- Scaling-up possibility
- Controllable
- Exposing to organic solvent
- High PDI
- Stability problem

C Extrusion

- Established method
- Uniform and homogenous formulation
- Possible clogging of the membrane pores
- Difficulties in scaling up

Nanomaterials, Volume 11, 2021, 3440

- Low PDI
- Fast & Scalable
- Reproducibility
- Controllable
- Low cost
- Complex fabrication
- Potential clogging

NanoGenerator® - Nanoparticle Synthesis System

=

Scalable LNP Production

Early Screening 0.1 – 2 mL (Flex-S) 0.1 – 0.5 mL (Flex-S Plus)

cGMP solutions

NanoGenerator® Flex-M/Flex-M Premium

Small/Medium
Production
1 – 12 mL (Flex-M)
1 – 200 mL (Flex-M Premium)

NanoGenerator® MAX (RUO)

Large production
50 mL – 1 L
Custom design for larger volume

NanoGenerator® MAX Lite (cGMP)

Small/Medium Production 2 – 200 mL

NanoGenerator® Max (cGMP)

Commercial Production 50 mL – 1 L (MAX 4.8L/h); > 20 L (MAX 40L/h)

OEM

Custom design and OEM solutions cGMP certified manufacturing >200 L throughput

NanoGenerator® MAX — Spec

	NanoGenerator [®]	NanoGenerator® MAX			
Model	MAX Lite	RUO flow kit 4.8 L/h	GMP flow kit 4.8 L/h	RUO flow kit 40 L/h	GMP flow kit 40 L/h
cGMP compliance	Yes	N/A	Yes	N/A	Yes
Software (21 CFR Part 11 compliant)	Yes	Optional	Yes	Optional	Yes
Throughput	2 – 200 ml	50 m	l – 1 L	> 2	0 L
Total flow rate	10 – 24 ml/min	1.2 – 4	1.8 L/h	Up to 40 L/h	
Flow rate ratio	1:1 – 9:1	1:1 -	- 9:1	1:1 – 5:1	
Inline dilution			1:1 – 5:1		
Size range		2	10 – 200 nm		
PDI			0.05 – 0.2		
Encapsulation efficiency		Up to 99%			
Payload		DNA, mRNA, siRNA	, protein, small molec	ules, etc.	
Dimension $(L \times W \times H)$	420 × 300 × 300 mm	620 × 380 × 430 mm			
Weight	35 Kg	50	Kg	65	Kg

NanoGenerator® Max Lite — Intro

- The NanoGenerator® Max Lite (cGMP) is designed for clinical and commercial production, especially for early phase clinical study and personalized medicine study.
- Disposable consumables: all wet materials are disposable (but can be reused if needed)
- Synthesizing volume: 2 200 ml
- Total flow rate up to 24 ml/min
- Flow rate ratio: 1:1 9:1
- Inline dilution ratio: 1:1 5:1

NanoGenerator® MAX — Intro

- The NanoGenerator® Max is designed for clinical and commercial production.
 - RUO: Preclinical applications
 - cGMP: Clinical and commercial production
- Two flow kits are available with different supported throughput:
 - 4.8 L/h flow kit: 50 mL 1 L
 - 40 L/h flow kit: >20 L (cGMP version only)
- 40L/h flow kit allows continuous synthesis mode.
- With the accessory (pump system), pump system can fill raw materials to the sample bottles to prevent the raw material run out

NanoGenerator® MAX — Contents

Instrument:

- Pneumatic system
- Valves
- Flow rate sensors
- Consumable kit
- Monitor (optional)
- Pumps (optional)

Consumable Kit:

(Sterilized, Nuclease free, pre-assembled)

- Sample bottle (aqueous)
- Sample bottle (solvent)
- Sample bottle (dilution)
- Waste bottle
- Bioprocessing bag (collection)
- Tubing & connectors
- Mixing chip

NanoGenerator® MAX — Software

Software (21 CFR Part 11) Features:

- Experimental parameter setting
- Experimental recipe save/load
- Real-time pressure/flow rate chart
- Historic experimental parameter tracking
- Historic pressure/flow rate tracking
- System self-diagnostic system
- Real-time flow rate diagnostic system
- Warning system
- Manual & automatic emergency stop system
- User management
- Audit trail
- Zero flow calibration
- Flow sensor maintenance & re-calibration (Service)

NanoGenerator® MAX — Software

Easy-to-use UI to set parameters including:

- Total flow rate
- Flow rate ratio
- Production volume
- Inline dilution factor
- Waste volume

Easy-to-use real-time flow rate /pressure chart including:

- Flow rate
- Pressure
- Air flow rate

All parameters are tracked for aqueous, solvent, and inline dilution lines

NanoGenerator® MAX — Performance

- Nanoparticle size decreases as total flow rate increases
- Size decrease experiences diminishing returns when the flow rate reaches 48 ml/min

	Reagents
Aqueous phase	Sodium acetate buffer (100mM, pH5.2)
Solvent phase	LipidFlex, 15mM in ethanol

Nanoparticle Size uniformity (50 ml/fraction)

 Throughout the entire production run, there is no significant difference in the nanoparticle size and PDI

	Reagents
Aqueous phase	Phosphate-Buffered Saline (1X, pH7.4)
Solvent phase	LipidDemo, 15mM in ethanol

NanoGenerator® — Scale Up

- Nanoparticle size is consistent across different production volumes if using optimal flow rates
- Mixing mechanism is the same for all PreciGenome instruments
- Production can be scaled up from discovery & screening to preclinical & clinical trial production

	Reagents
Aqueous phase	Sodium acetate buffer (100mM, pH5.2)
Solvent phase	LipidFlex, 15mM in ethanol

NanoGenerator® — Scale Up

	Reagents
Aqueous phase	Sodium acetate buffer (100mM, pH5.2)
Payload	RNA (~600 nt)
Solvent phase	LipidFlex RNA-LNP kit

Case Study I: mRNA LNPs for T cell Transfection

eGFP mRNA Lipid Nanoparticles

Z-Average Diameter: 67.3 nm

PDI: 0.106

Figure 1. mRNA(eGFP)-LNP Synthesized by NanoGenerator. Average diameter is 67.3 nm. PDI is 0.106. Encapsulation efficiency is 94.5% (Ribo Green RNA Quantification Kit).

Figure 2. GFP(+) positive population of control (non-treat) and EGFP mRNA LNP treated primary T cells at 16, 40 and 64 hours. Cells were stained (1:50) using Biolegend 7-AAD Viability Staining for 10 minutes. Gating: First select for individual cells (excluding doublets). Then select for the healthy cell population. Then select for viable cells by excluding cells which are positive for 7-AAD. Gate for FitC-A channel (GFP)

mRNA Encapsulation

In Vitro Transcription of mRNA encoding bispecific antibody & others.

Co-encapsulation or Co-injection with:

Checkpoint Inhibitor: PD-1 ab, PD-L1 ab... Immunomodulator: CD40, OX40L, CD70... Chemokine: CXCL2, CXCR1, CXCL9...

Intra-tumoral injection

Antibody + T cell infiltration = Tumor cell lysis (T cell Therapy)

Released TAA & Neoantigen from lysate + Immunomediator (adjuvant)

= Innate Immune system activation (Tumor vaccine)

Treatment of Two Late-Stage Breast Cancer Cases

Unresectable breast cancer with skin lesion

Case 1 Three photos

- 1. Appearance before treatment
- **2.** Considerable change in appearance on skin lesions after first treatment
- **3.** Continued improvement on skin lesions after two treatments

4/1/2024 Baseline

4/22/2024 After one Injection

Triple negative breast cancer

Case 2

Left: CT scan showing a stage 3 invasive ductal carcinoma that did not respond to prior immunotherapy

Right: After one treatment, the tumor has dramatically resolved.

Cholangiocarcinoma with Liver Metastasis

Case Information: A 45-year-old male patient, HBsAg positive for over 2 years, presented with intrahepatic lesions and abdominal distension. A recent CT scan revealed a large abnormal density in the liver's right lobe, enlarged abdominal lymph nodes, and a portal vein defect, indicating hepatocellular carcinoma with lymph node metastasis and portal vein cancer thrombosis. The patient's liver function was Child-Pugh grade A with some blood count abnormalities.

02/28/2024 after one injection

07/24/2024, after four injections

The posttreatment CT scan showed dramatic shrink of the intrahepatic cholangiocarcinoma after four intratumoral injections of the EpCAM-CD3-Fc+IM-1+IM-2 cocktail mRNA-LNP. The Patient requested more injections on 9/12/2024

Liver Metastases from Colorectal Cancer

Lesion 1

37.0 x 28.0 mm 3/25/2024

PreciGenome

27.0 x 24.0 mm 4/27/2024

Lesion 2

70.0 x 60.0 mm 3/25/2024

56.0 x 43.0 mm 4/27/2024

The enhanced CT scan of the upper abdomen showed that the intrahepatic tumor had shrunk

Why PreciGenome?

High Performance & Efficiency

- Tunable size (40-200 nm)
- Low PDI (0.05-0.2)
- High encapsulation efficiency

Open Platform

- Upgradable system
- Transferable microfluidic chips

Scalable Throughput

- Low volume for screening (Flex-S)
- Medium volume production (Flex-M)
- High volume production (Pro, MAX-GMP)

Simple Operation

- Simple setup
- Compact size
- Intuitive UI w/ touchscreen

Cost Effective

- Affordable configuration
- Lower cost per run

Custom Support

- Demo, Training and Support
- Extended Warranty
- Hot swap option
- Local US company

Appendix I

- Manual
- Standard Operation Procedure (SOP)
- Warranty (1 year)
- Documentation related to cGMP compliance (cGMP version)
 - ✓ Installation qualification, operational qualification, performance qualification
 - ✓ Report of consumable items
 - ✓ Chemical compatibility report of consumable items
 - ✓ Report of endotoxin test
 - ✓ Report of RNase/DNase free test
 - ✓ Report of sterilization test
 - ✓ Report of ethylene oxide residue test
 - ✓ 21 CFR Part 11 report
 - ✓ Electromagnetic compatibility report
 - ✓ Report of safety regulations
 - ✓ Other reports by requesting

Appendix II

